* = corresponding author, & = authors contributed equally, IF = 2021 impact factor, bold = lab member or supervised student


127) Bay SK*, Ni G, Lappan R, Leung PM, Wong WW, Holland S, Athukorala N, Knudsen KS, Fan Z, Kerou M, Jain S, Schmidt O, Eate V, Clarke DA, Jirapanjawat T, Tveit A, Featonby T, White S, White N, McGeoch MA, Singleton CM, Cook PLM, Chown SL*, Greening C* (2024). Microbial aerotrophy enables continuous primary production in diverse cave ecosystems. Submitted. [CITES = 0]

126) Han Y, Peng Y, Peng J, Cao L, Xu Y, Yang Y, Wu M, Zhou H, Zhang C, Zhang D, Wang M, Greening C, Dong X* (2024). Phylogenetically and structurally diverse reductive dehalogenases link biogeochemical cycles in deep-sea cold seeps. In review [CITES = 0]

125) Gillett DL*Hutchinson T, Mudaliyar M, Watts TD, Wong WW, Locop J, Jimenez L, Hanchapola I, Lee H-C, Tanuwidjaya E, Steele JR, Schittenhelm RB, Barlow CK, Grinter R, Ghosal D, Cook PLM, Greening C* (2023). An obligate aerobe adapts to hypoxia by hybridising fermentation with carbon storage. In preparation [CITES = 0]

124) Kropp A & Gillett DL, Venugopal H, Gonzalvez MA, Lingford JP, Barlow CK, Zhang J, Greening C*Grinter R* (2024). Quinone extraction drives atmospheric carbon monoxide oxidation in bacteria. In revision [CITES = 0]

123) Baubin C, Poodiack B, Stovicek A, Ghazaryan L, Bay SKGreening C, Siebner H, Gillor O* (2023). Geosmin in desert soil is produced by Actinobacteriota and controlled by environmental conditions. In preparation [CITES = 0]


122) Greening C* & Cabotaje PR & Alvarado LEV & Leung PM, Land H, Senger M, Klamke MA, Milton MLappan RJ, Mullen S, West-Roberts J, Mao J, Song J, Schoelmerich M, Stairs C, Grinter R*, Spang A*, Banfield JF*, Berggren G* (2024). Minimal and hybrid hydrogenases are active from anaerobic archaea. In press, Cell [IF = 66.9, CITES = 0]

121) Valentin-Alvarado LE & Appler KE, De Anda V, Schoelmerich MC, West-Roberts J, Kivenson V, Crits-Christoph A, Ly L, Sachdeva R, Greening C, Savage DF, Baker BJ, Banfield JF* (2024). Asgard archaea modulate potential methanogenesis substrates in wetland soil. In press, Nature Communications [IF = 16.6, CITES = 0]

120) Lappan R*, Thakar J, Morales Moncayo L, Besser A, Bradley JA*, Goordial J*, Trembath-Reichert E*, Greening C* (2024). The atmosphere: a transport medium or an active microbial ecosystem? The ISME Journal, wrae092 [IF = 11.2, CITES = 0]

119) Timmis K*, [15 authors], Greening C, [63 authors], Serna JG (2024). A concept for international societally relevant microbiology education and microbiology knowledge promulgation in society. Microbial Biotechnology 15, e14456 [IF = 5.7, CITES = 0]

118) Ang B, Jirapanjawat T, Tay KP, Ashtiani D, Greening C, Tuck K, Neild A, Cadarso VJ* (2024). Rapid concentration and detection of bacteria in milk using a microfluidic surface acoustic wave activated nanosieve. In press, ACS Sensors [IF = 8.9, CITES = 0]

117) Dong X* & Zhang T, Wu W, Peng Y, Liu X, Han Y, Chen X, Gao Z, Xia J*, Shao Z, Greening C (2024). A vast repertoire of secondary metabolites potentially influences community dynamics and biogeochemical processes in cold seeps. Science Advances 10, 17 [IF = 13.6, CITES = 0]

116) Leung PM*Grinter RTudor-Matthew ELingford JPJimenez L, Lee H-C, Milton M, Hanchapola I, Tanuwidjaya E, Kropp A, Peach H, Carere CR, Stott MB, Schittenhelm RB, Greening C* (2024). Trace gas oxidation sustains energy needs of a thermophilic archaeon at suboptimal temperatures. Nature Communications 15, 3216 [IF = 16.6, CITES = 0]

115) Gillett DL*, Grinter R, Greening C (2024). [MoCu]-dependent carbon monoxide dehydrogenases. Encyclopedia of Inorganic and Bioinorganic Chemistry (invited book chapter) [IF = N/A, CITES = 0]

114) Hutchinson TF, Kessler AJ*, Wong WW, Hall P, Leung PM, Jirapanjawat TGreening C, Glud RN, Cook PLM* (2024). Microorganisms oxidize glucose through distinct pathways in permeable and cohesive sediments. The ISME Journal, wrae001 [IF = 11.2, CITES = 0]

113) Ricci F*Greening C* (2024). Chemosynthesis: a neglected foundation of marine ecology and biogeochemistry. Trends in Microbiology, doi: 10.1016/j.tim.2023.11.013 [IF = 20.0, CITES = 0] (invited article)

112) Li Q, Ma Z, Juo J, Zhang X, Wang R, Zhang S, Jiao J, Dong X, Janssen PH, Ungerfeld EM, Greening C, Tan Z, Wang M (2024). Distinct microbial hydrogen and reductant disposal pathways explain interbreed variations in ruminant methane yield. The ISME Journal 18, wrad016 [IF = 11.2, CITES = 0]

111) Valentin Alvarado LE, Fakra SC, Probst AJ, Giska JR, Jaffe AL, Oltrogge LM, West-Roberts J, Rowland J, Manga M, Savage DF, Greening C, Baker BJ, Banfield JF* (2024). Autotrophic biofilms sustained by deeply-sourced groundwater host diverse CPR bacteria implicated in sulfur and hydrogen metabolism. Microbiome 12, 15 [IF = 15.5, CITES = 0]

110) Vanugopal H & Kropp A, Greening CGrinter R* (2023). Determining the high-resolution structure of the [NiFe]-hydrogenase Huc by native host purification and Cryo-EM. Cryo-Electon Microscopy in Structural Biology (invited book chapter) [IF = N/A, CITES = 0]


109) Greening C, Kropp A, Vincent KA, Grinter R* (2023). Developing high-affinity, oxygen-insensitive [NiFe]-hydrogenases as biocatalysts for energy conversion.  Biochemical Society Transactions 51, 1921-1933 [IF = 3.9, CITES = 0] (invited article)

108) Marcelino VM*, Welsh C, Diener C, Gulliver EL, Rutten EL, Young RB, Giles EM, Gibbons SM, Greening C, Forster SC* (2023). Disease-specific loss of microbial cross-feeding interactions in the human gut. Nature Communications 14, 6546 [IF = 17.7, CITES = 0]

107) Frielingsdorf S*, Pinske C, Valetti F, Greening C (2023). Editorial: Hydrogenase structure, function, maturation, and application. Frontier s in Microbiology 14, 1284540 [IF = 6.1, CITES = 4]

106) Ni G*Leung PM, Daebeler A, Guo J, Hu S, Cook PLM, Nicol G, Daims H, Greening C* (2023). Nitrification in acidic and alkaline environments. Essays in Biochemistry 67, 753–768 [IF = 7.3, CITES = 0] (invited article)

105) Wood JL, Malik AA, Greening C, Green PT, McGeoch MA, Franks AE (2023). Rethinking CSR theory to incorporate microbial metabolic diversity and foraging traits. The ISME Journal [IF = 11.2, CITES = 0]

104) Nauer PA, Kessler AJ, Hall P, Popa ME, Hietbrink ST, Hutchinson T, Wong WW, Attard K, Glud R, Greening C, Cook PLM (2023). Pulses of labile carbon cause transient decoupling of fermentation and respiration in permeable sediments. Limnology and Oceanography 68, 2141-2152 [IF 5.0, CITES = 0]

103) Xu Y, Teng Y*, Ren W, Zhao L, Luo Y, Christie P, Greening C (2023). Endogenous biohydrogen from a rhizobium-legume association drives microbial biodegradation of polychlorinated biphenyl in contaminated soil. Environment International 176, 107962 [IF = 13.4, CITES = 0]

102) Alexander LT & Durairaj J, [12 authors], Greening C, Grimes JM, Grinter R, Gurusaran M, Hartmann MD, Hitchman CJ, Keown JR, Kropp A, [28 authors], Schwede T (2023). Protein target highlights in CASP15: analysis of models by structure providers. Proteins [IF = 4.1, CITES = 0]

101) Islam ZF*Greening C, Wu HW (2023). Microbial hydrogen cycling in agricultural systems – plant beneficial or detrimental? Microbial Biotechnology 16, 1623-1628 [IF = 6.6, CITES = 0]

100) Grinter R* Kropp A, Venugopal H, Senger M, Badley J, Cabotaje P, Jia R, Duan Z, Huang P, Stripp ST, Barlow CK, Belousoff M, Shafaat HS, Cook GM, Vincent KA, Schittenhelm RB, Khalid S, Berggren G, Greening C* (2023). Structural basis for bacterial energy extraction from atmospheric hydrogen. Nature 615, 541-547 [IF = 69.5, CITES = 0]

99) Wyers D, Jirapanjawat T, Quinn JT, Whittaker MR, Greening C, Junkers T (2023). Narrowing down chain length effects on the antibacterial action of guanylated oligomers. Polymer Chemistry 14, 2126-2134 [IF = 5.4, CITES = 0]

98) Gulliver EL, Adams V, Marcelino VR, Gould J, Rutten EL, Powell DR, Young RB, D’Adamo GL, Hemphill J, Solari SM, Revitt-Mills SA, Munn S, Jirapanjawat T, Greening C, Boer JC, Flanagan KL, Kaldhusdal M, Plebanski M, Gibney KB, Moore RJ, Rood JI*, Forster SC* (2023). Extensive genome analysis identifies novel plasmid families in Clostridium perfringens. Microbial Genomics 9, 000995 [IF = 5.2, CITES = 0].

97) Jain S*, Heffernan J, Joshi J, Watts T, Marcellin E*, Greening C* (2023). Microbial conversion of waste gases into single-cell protein. Microbiology Australia 44, 27-30 [IF = N/A, CITES = 0] (invited article)

96) Dong X*, Peng Y, Wang M, Woods L, Wu W, Wang Y, Xiao X, Li J, Jia K, Greening C, Shao Z, Hubert CRJ (2023). Evolutionary ecology of microbial populations inhabiting deep sea sediments associated with cold seeps. Nature Communications 14, 1127 [IF = 17.7, CITES = 0]

95) Lappan R & Shelley G & Islam ZFLeung PM, Lockwood S, Nauer PA, Jirapanjawat TNi GChen Y-C, Kessler AJ, Williams TJ, Cavicchioli R, Baltar F, Cook PLM, Morales SE, Greening C* (2023). Molecular hydrogen in seawater supports growth of diverse marine bacteria. Nature Microbiology 8, 581-595 [IF = 31.0, CITES = 0] (see commentary)

94) Ni G & Lappan R, Hernandez M, Santini T, Tomkins A, Greening C* (2023). Functional basis of primary succession: traits of the pioneer microbes. Environmental Microbiology 25, 171-176 [IF = 5.5, CITES = 0] (invited article)


93) Dong X* & Zhang C, Peng Y, Zhang H-X, Shi L-D, Wei G, Hubert CRJ, Wang Y*, Greening C (2022). Phylogenetically and catabolically diverse diazotrophs reside in deep-sea cold seep sediments. Nature Communications 13, 4866 [IF = 17.7, CITES = 0]

92) Ray AE, Zaugg J, Benaud N, Chelliah DS, Bay SK, Wong HL, Leung PM, Ji M, Terauds A, Montgomery K, Greening C, Cowan DA, Kong W, Williams TJ, Hugenholtz P, Ferrari BC* (2022). Atmospheric chemosynthesis is phylogenetically and geographically widespread and contributes significantly to carbon fixation throughout cold deserts. The ISME Journal 16, 2547-2560 [IF = 11.2, CITES = 0]

91) Li QS & Wang R, Ma ZY, Zhang XM, Jiao JZ, Zhang ZG, Ungerfeld EM, Yi KL, Zhang BZ, Long L, Long Y, Tao Y, Huang T, Greening C, Tan ZL*, Wang M* (2022). Dietary selection of metabolically distinct microorganisms drives hydrogen metabolism in ruminants. The ISME Journal 16, 2535-2546 [IF = 11.2, CITES = 0]

90) Li H* & Greening C* (2022). Termite-engineered microbial communities of termite nest structures: a new dimension to the extended phenotype. FEMS Microbiology Reviews 46, fuac034 [IF = 15.2, CITES = 0] (invited review)

89) Leung PM, Daebeler A*, Chiri E, Hanchapola I, Gillett DL, Schittenhelm RF, Daims H*, Greening C* (2022). A nitrite-oxidizing bacterium constitutively consumes atmospheric hydrogen. The ISME Journal 16, 2213-2219 [IF = 11.2, CITES = 6]

88) Lockwood S, Greening C, Baltar F, Morales SE* (2022). Global and seasonal variation of marine phosphonate metabolism. The ISME Journal 16, 2198-2212 [IF = 11.2, CITES = 0]

87) Greening C*Grinter R* (2022). Microbial oxidation of atmospheric trace gases. Nature Reviews Microbiology 20, 513-528 [IF = 78.3, CITES = 3] (cover image article)

86) Lappan R*, Jirapanjawat T, Williamson DA, Lange S, Chown SL, Greening C (2022). Simultaneous detection of multiple pathogens with the TaqMan Array Card.  MethodsX 9, 101707 [IF = 1.9, CITES = 1]

85) Martínez-Pérez C, Greening C, Bay SK, Lappan R, Zhao Z, De Corte D, Hulbe C, Ohneiser C, Stevens C, Thomson B, Stepanauskas R, González JM, Logares R, Herndl GJ, Morales SE*, Baltar F* (2022). Phylogenetically and functionally diverse microorganisms reside under the Ross Ice Shelf. Nature Communications 13, 117 [IF = 17.7, CITES = 6]

84) Chen YC & Leung PM, Cook PLM, Wong WW, Hutchinson T, Eate V, Kessler AJ, Greening C* (2022). Hydrodynamic disturbance controls microbial community assembly and biogeochemical processes in coastal sediments. The ISME Journal 16, 750-763 [IF = 11.2, CITES = 6]

83) Greening C*Islam ZFBay SK (2022). Hydrogen is a major lifeline for aerobic bacteria. Trends in Microbiology 30, 330-337  [IF = 20.0, CITES = 9] (invited article)

82) Langwig MV* & De Anda V, Dombrowski N, Seitz KW, Rambo IM, Greening C, Teske A, Baker BJ* (2022). Large-scale protein level comparison of Deltaproteobacteria reveals cohesive metabolic groups. The ISME Journal 16, 307-320 [IF = 11.2, CITES = 13]


81) Ortiz M & Leung PM*Shelley GJirapanjawat T, Nauer PA, Van Goethem MW, Bay SKIslam ZFJordaan K, Vikram S, Chown SL, Hogg ID, Makhalanyane TP, Grinter R, Cowan DA*, Greening C* (2021). Multiple energy sources and metabolic strategies sustain microbial diversity in Antarctic desert soils. PNAS 118, e2025322118 [IF = 12.8, CITES = 14]

80) Xu Y, Ting Y*, Dong X, Wang X, Zhang C, Ren W, Zhao L, Luo Y, Greening C (2021). Genome-resolved metagenomics reveals how soil bacterial communities respond to elevated H2 availability. Soil Biology and Biochemistry 163, 108644 [CITES = 0] [IF = 8.5, CITES = 5]

79) Muleta AJ, Lappan R, Stinear TP, Greening C* (2021). Understanding the transmission of Mycobacterium ulcerans: a step towards controlling Buruli ulcer. PLOS Neglected Tropical Diseases 15, e0009678 [IF = 4.8, CITES = 8]

78) Chiri E & Nauer PA*, Lappan RJirapanjawat T, Waite DW, Handley KM, Hugenholtz P, Cook PLM, Arndt SK, Greening C* (2021). Termite gas emissions select for hydrogenotrophic microbial communities in termite mounds. PNAS 118, e2102625118 [IF = 12.8, CITES = 6]

77) Grinter R*, Morris FC, Dunstan RA, Leung PM, Kropp A, Belousoff M, Gunasinghe SD, Scott NE, Beckham S, Peleg AY, Greening C, Li J, Heinz E, Lithgow T* (2021). BonA from Acinetobacter baumannii forms a divisome-localized decamer that supports outer envelope function. mBio 4, e01480-21 [IF = 7.8, CITES = 3]

76) Xie F, Jin W, Si H, Yuan Y, Tao Y, Liu J, Wang X, Yang C, Li Q, Yan X, Lin L, Jiang Q, Zhang L, Guo C, Greening C, Heller R, Guan L, Pope PB, Tan Z, Zhu W, Wang M, Qiu Q, Li Z, Mao S (2021). An integrated gene catalog and over 10,000 metagenome-assembled genomes from the gastrointestinal microbiome of ruminants. Microbiome 9, 137 [IF = 16.8, CITES = 29]

75) French MA & Barker SF & Taruc RR, [25 authors], Greening C, [8 authors], Clasen T, Luby S, Leder K*, RISE Consortium (2021). A planetary health model for reducing exposure to faecal contamination in urban informal settlements: baseline findings from Makassar, Indonesia. Environment International 155, 106679 [IF = 13.4, CITES = 9]

74) Bay SK*, Waite DW, Dong X, Gillor O, Chown SL, Hugenholtz P, Greening C* (2021). Chemosynthetic and photosynthetic bacteria contribute differentially to primary production across a steep desert aridity gradient. The ISME Journal 15, 3339-3356 [IF = 11.2, CITES = 18]

73) Wong WW*, Greening C, Shelley G, Lappan RLeung PM, Kessler AJ, Winfrey BK, Poh SC, Cook PLM (2021). Effects of drift algae accumulation and nitrate loading on nitrogen cycling in a eutrophic coastal sediment. Science of the Total Environment 790, 147749 [IF = 10.8, CITES = 5]

72) Garcia SL* & Mershad M & Buck M, Tsuji JM, Neufeld JD, McMahon KD, Bertilsson S, Greening C, Peura S (2021). Freshwater Chlorobia exhibit metabolic specialization among cosmopolitan and endemic populations. mSystems 6, e01196-20 [IF 7.3, CITES = 3]

71) Bayly K Cordero PRFKropp A, Huang C, Schittenhelm RF, Grinter R*Greening C* (2021). Mycobacteria tolerate carbon monoxide by remodelling their respiratory chain. mSystems 6, e310292-20 [IF = 7.3, CITES = 2]

70) Lappan R & Henry R, Chown SL, Luby SP, Higginson EE, Bata L, Jirapanjawat T, Schang C, Openshaw JJ, O’Toole, Lin A, Tela A, Turagabeci A, Wong THF, French MA, Brown RR, Leder K, Greening C*, McCarthy D* (2021). Monitoring diverse enteric pathogens across environmental and host reservoirs with TaqMan Array Cards and standard qPCR: a methodological comparison study.  The Lancet Planetary Health 5, E297-E308 [IF = 28.8, CITES = 9]

69) Chen Y-J & Leung PM, Wood JL, Bay SK, Hugenholtz P, Kessler AJ, Shelley G, Waite DW, Franks A, Cook PLM*, Greening C* (2021). Metabolic flexibility allows bacterial habitat generalists to become dominant in a frequently disturbed ecosystem. The ISME Journal 15, 2986-3004 [IF = 11.2, CITES = 45]

68) Grinter R*Greening C* (2021). Cofactor F420: an expanded view of its distribution, biosynthesis, and roles in bacteria and archaea. FEMS Microbiology Reviews 45, fuab021 [IF = 15.2, CITES = 3]

67) Jeffrey LC*, Maher DT, Tait DR, Reading MJ, Chiri E, Greening C, Johnston SG (2021). Isotopic evidence for axial tree stem methane oxidation within subtropical lowland forests. New Phytologist 230, 2200-2212 [IF = 10.3, CITES = 13]

66) Jeffrey LC*, Maher DT, Chiri ELeung PM, Nauer PA, Arndt SK, Tait DR, Greening C, Johnston SG (2021). Bark-dwelling methanotrophic bacteria decrease methane emissions from trees. Nature Communications 12, 2127 [IF = 17.7, CITES = 26] (see Nature Reviews Microbiology summary)

65) Bay SK, Dong X, Bradley JA, Leung PMGrinter RJirapanjawat T, Arndt SK, Cook PLM, LaRowe D, Nauer PA, Chiri E* Greening C* (2021). Trace gas oxidizers are widespread and active members of soil microbial communities. Nature Microbiology 6, 246-256 [IF = 31.0, CITES = 44] (see commentary / see Nature Reviews Microbiology summary / F1000 recommended)

64) Nauer PA*, Chiri EJirapanjawat T, Greening C, Cook PLM* (2021). Inexpensive modification of Exetainers for the reliable storage of trace-level hydrogen and carbon monoxide gas samples. Biogeosciences 18, 729–737 [IF 5.1, CITES = 4]

63) Leder KS*, [12 authors], Greening C, Henry R, Higginson E, Johnston D, Lappan R, [14 authors], Brown RR, RISE Consortium (2021).  Study design, rationale and methods of the Revitalising Informal Settlements and their Environments (RISE) study: a cluster randomised controlled trial to evaluate environmental and human health impacts of a water sensitive intervention in informal settlements in Indonesia and Fiji. BMJ Open 11, e042850 [IF = 2.7, CITES = 12]

62) Giguere AT & Eichorst SA*, Meier DV, Herbold CW, Richter A, Greening C, Woebken D (2021). Acidobacteria are active and abundant members of diverse atmospheric H2-oxidizing communities detected in temperate soils. The ISME Journal 15, 363-376 [IF = 11.2, CITES = 12]


61)  Jordaan K & Lappan R, Dong X, Aitkenhead IJ, Bay SK, Chiri E, Wieler N, Meredith LK, Cowan DA, Chown SL, Greening C* (2020). Hydrogen-oxidizing bacteria are abundant in desert soils and strongly stimulated by hydration. mSystems 5, e01131-20 [IF = 7.3, CITES = 20] (see video summary)

60) Dong X*, Rattray JE, Campbell C, Webb J, Chakraborty A, Adebayo O, Matthews S, Li C, Fowler M, Macdonald A, Morrison N, Groves RA, Lewis IA, Wang SH, Mayumi D, Greening C, Hubert CRJ* (2020). Thermogenic hydrocarbon biodegradation by diverse depth-stratified microbial populations at a Scotian Basin cold seep. Nature Communications 11, 5825 [IF = 17.7, CITES = 23]

59) Greening C*, Lithgow T* (2020). Formation and function of bacterial organelles. Nature Reviews Microbiology 18, 677–689 [IF = 78.3, CITES = 60] (featured article)

58) Chiri EGreening C*, Lappan R, Waite DW, Jirapanjawat T, Dong X, Arndt SK*, Nauer PA (2020). Termite mounds contain soil-derived methanotroph communities kinetically adapted to elevated methane concentrations. The ISME Journal 14, 2715–2731 [IF = 11.2, CITES = 17] (co-corresponding author)

57) Islam ZF, Welsh C, Bayly K, Grinter R, Southam G, Gagen EJ, Greening C* (2020). A widely distributed hydrogenase oxidises atmospheric H2 during bacterial growth.  The ISME Journal 14, 2649–2658 [IF = 11.2, CITES = 27]

56) Bay S*, McGeoch MA, Gillor O, Wieler N, Palmer DJ, Baker DJ, Chown SL, Greening C* (2020). Soil bacterial communities exhibit strong biogeographic patterns at fine taxonomic resolution. mSystems 5, e00540-20 [IF = 7.3, CITES = 19] (editor’s choice)

55) Grinter R*Ney B, Brammananth R, Barlow CK, Cordero PRFGillett DL, Izore T, Cryle MJ, Harold LK, Cook GM, Taiaroa G, Williamson DA, Warden AC, Oakeshott JG, Taylor MC, Crellin PK, Jackson CJ, Schittenhelm RB, Coppel RL, Greening C* (2020). Cellular and structural basis of synthesis of the unique intermediate dehydro-F420-0 in mycobacteria. mSystems 5, e00389-20 [IF = 7.3, CITES = 5] (see cover image)

54) Greening C (ed.), Boyd ES (ed.) (2020). Microbial Hydrogen Metabolism. e-Book, Frontiers Press.

53) Kessler AJ*, Rogers A, Cyronak T, Bourke MF, Hasler-Sheetal H, Glud RN, Greening C, Meysman FJ, Eyre BD, Cook PLM (2020). Pore water conditions driving calcium carbonate dissolution in reef sands. Geochimica et Cosmochimica Acta 279, 16-28 [IF = 5.9, CITES = 6]

52) Leung PM*Bay SK, Meier DV, Chiri E, Cowan DA, Gillor O, Woebken D, Greening C* (2020). Energetic basis of microbial growth and persistence in desert ecosystems. mSystems 5, e00495-19 [IF = 7.3, CITES = 36] (invited article)

51) Lee BM, Harold LK, Almeida DV, Afriat-Jurnou L, Aung HL, Forde BM, Hards K, Pidot SJ, Ahmed FH, Mohamed AE, Taylor MC, West NP, Stinear TP, Greening C, Beatson SA, Nuermberger EL, Cook GM, Jackson CJ* (2020). Predicting nitroimidazole antibiotic resistance mutations in Mycobacterium tuberculosis with protein engineering. PLoS Pathogens 16, e1008287 [IF = 6.8, CITES = 38]

50) Benoit SL, Maier RL*, Sawers RG, Greening C* (2020). Molecular hydrogen metabolism: a widespread trait of pathogenic bacteria and protists. Microbiology and Molecular Biology Reviews 84, e00092-19 [IF = 13.0, CITES = 40] (F1000 recommended / co-first author)

49) Greening C*, Boyd ES* (2020). Editorial: Microbial Hydrogen Metabolism. Frontiers in Microbiology 11, 56 [IF = 6.1, CITES = 4]


48) Cordero PRFGrinter R, Hards K, Cryle MJ, Warr CG, Cook GM, Greening C* (2019). Two uptake hydrogenases differentially interact with the aerobic respiratory chain during mycobacterial growth and persistence. Journal of Biological Chemistry 294, 18980-18991 [IF = 5.5, CITES = 20]

47) Kelly WJ, Leahy SC, Kamke J, Soni P, Koike S, Mackie R, Seshadri R, Cook GM, Morales SE, Greening C, Attwood GT* (2019). Occurrence and expression of genes encoding methyl-compound production in rumen bacteria. Animal Microbiome 1, 15 [IF = TBA, CITES = 27]

46) Islam ZF & Cordero PRFGreening C(2019). Putative iron-sulfur proteins are required for hydrogen consumption and enhance survival of mycobacteria. Frontiers in Microbiology 11, 2749 [IF = 5.6, CITES = 6]

45) Grinter R*, Leung PM, Wijeyewickrema LC, Littler D, Beckham S, Pike RN, Walker D, Greening C, Lithgow T* (2019). Protease-associated import systems are widespread in Gram-negative bacteria. PLoS Genetics 15, e1008435 [IF = 6.0, CITES = 12]

44) Taruc RZ*, [19 authors], Greening C, [10 authors], Brown RR (2019). Implementing baseline ecological and human health field assessments in the Revitalising Informal Settlements and their Environments (RISE) programme in Makassar, Indonesia: an interdisciplinary study. The Lancet Planetary Health 3, S8 [IF = 28.8, CITES = 0]

43) Cordero PRFBayly KLeung PM, Huang C, Islam ZF, Schittenhelm R, King GM, Greening C* (2019). Atmospheric carbon monoxide oxidation is a widespread mechanism supporting microbial survival. The ISME Journal 13, 2868-2881 [IF = 11.2, CITES = 89]

42) Hill GE* & Hood WR, Ge Z, Grinter RGreening C, Johnson JD, Park N, Taylor H, Andreasen V, Powers M, Justyn N, Parry H, Kavazis A, Zhang Y (2019). Plumage redness signals mitochondrial function in the House Finch.  Proceedings of the Royal Society B 286, 20191354 [IF = 5.5, CITES = 53]

41) Carere CR*, McDonald B, Peach H, Greening C, Gapes DJ, Collet C, Stott MB (2019). Hydrogen oxidation influences glycogen accumulation in a verrucomicrobial methanotroph. Frontiers in Microbiology 10, 1873 [IF = 6.1, CITES = 12]

40) Greening C* & Geier R, Wang C, Woods LC, Morales SE, McDonald MJ, Rushton-Green R, Morgan XC, Koike S, Leahy SC, Kelly WJ, Cann I, Attwood GT, Cook GM, Mackie RI* (2019). Diverse hydrogen production and consumption pathways influence methane production in ruminants. The ISME Journal 13, 2617-2632 [IF = 11.2, CITES = 89]

39) Dong X*, Greening C, Rattray JE, Chakraborty A, Chuvochina M, Mayumi D, Dolfing J, Li C, Brooks JM, Bernard BB, Groves RA, Lewis IA, Hubert CRJ* (2019). Metabolic potential of uncultured bacteria and archaea associated with petroleum seepage in deep-sea sediments. Nature Communications 10, 1816 [IF = 17.7, CITES = 98]

38) Bashiri G* & Antoney J, Jirgis EN, Shah MV, Ney B, Copp, J, Stuteley, SM, Sreebhavan, S, Palmer, B, Middleditch, M, Tokuriki, N, Greening C, Scott C, Baker EN, Jackson CJ* (2019). A revised biosynthetic pathway for the cofactor F420 in prokaryotes. Nature Communications 10, 1558 [IF = 17.7, CITES = 49]

37) Greening C*, Grinter R, Chiri E (2019). Uncovering the metabolic strategies of the dormant microbial majority: towards integrative approaches. mSystems 4, e00107-19 [IF = 7.3, CITES = 20] (invited article; see editorial)

36) Islam ZF, Cordero PRF, Feng J, Chen Y-J, Bay SK, Jirapanjawat T, Gleadow RM, Carere CR, Stott MB, Chiri E, Greening C(2019). Two Chloroflexi classes independently evolved the ability to persist on atmospheric hydrogen and carbon monoxide. The ISME Journal 13, 1801–1813 [IF = 11.2, CITES = 78]

35) Spang A*, Stairs CW, Donbrowski N, Eme L, Lombard J, Cáceres EF, Greening C, Baker BJ, Ettema TJ* (2019). Proposal of the reverse flow model for the origin of the eukaryotic cell based on comparative analyses of Asgard archaeal metabolism. Nature Microbiology 4, 1138–1148 [IF = 31.0, CITES = 114] (see commentary / F1000 Recommended)

34) Kessler AJ & Chen Y-J & Waite DW, Hutchinson T, Koh S, Popa ME, Beardall J, Hugenholtz P, Cook PL*, Greening C* (2019). Bacterial fermentation and respiration processes are uncoupled in anoxic permeable sediments. Nature Microbiology 4, 1014-1023 [IF = 31.0, CITES = 47]

33) Hill GE*, Havird JC, Sloan DB, Burton RS, Greening C, Dowling DK (2019). Assessing the fitness consequences of mitonuclear interactions in natural populations. Biological Reviews 94, 1089-1104 [IF = 12.8, CITES = 86]

32) Harold LK, Antoney J, Ahmed FH, Hards K, Carr PD, Rapson T, Greening C*, Jackson CJ*, Cook, GM* (2019). FAD-sequestering proteins protect mycobacteria against hypoxic and oxidative stress. Journal of Biological Chemistry 294, 2903-2912 [IF = 5.5, CITES = 9] (co-corresponding author)


31) Stott MB*, Carere CR, Greening C, Morgan XC (2018) Pyrinomonas. Bergey’s Manual of Systematics of Archaea and Bacteria [IF = N/A, CITES = 1] (invited book chapter)

30) Morales HE*, Pavlova A, Amos N, Major R, Kilian A, Greening C, Sunnucks P* (2018). Concordant divergence of mitogenomes and a mitonuclear gene cluster in bird lineages inhabiting different climates. Nature Ecology & Evolution 2, 1258-1267 [IF = 19.1, CITES = 70]

29) Dong X, Greening C, Brüls T, Conrad R, Guo K, Blaskowski S, Kaschani F, Kaiser M, Laban NA, Meckenstock R* (2018) Fermentative Spirochaetes mediate necromass recycling in anoxic hydrocarbon-contaminated habitats. The ISME Journal 12, 2039-2050 [IF = 11.2, CITES = 58]

28) Bay S, Ferrari BC, Greening C* (2018) Life without water: how do bacteria generate biomass in desert ecosystems? Microbiology Australia 39, 28-32 [IF = N/A, CITES = 31] (invited article, see cover image)

27) Wang X, Teng Y*, Tu C, Luo Y, Greening C, Zhang N, Dai S, Ren W, Zhao L, Li Z (2018) Coupling between nitrogen fixation and tetrachlorobiphenyl dechlorination in a rhizobium-legume symbiosis. Environmental Science & Technology 52, 2217-2224 [IF = 11.3, CITES = 22]

26) Krzemińska U*, Morales HE, Greening C, Nyári AS, Wilson R, Song BK, Austin CM, Sunnucks P, Pavlova A, Rahman (2018). Population mitogenomics provides insights into evolutionary history, source of invasions and diversifying selection in Corvus splendens. Heredity 120, 296-309 [IF = 3.8, CITES = 6]

25) Lamb AM, Gan HM, Greening C, Joseph L, Lee YP, Morán-Ordóñez A, Sunnucks P, Pavlova A* (2018). Climate-driven mitochondrial selection: a test in Australian songbirds. Molecular Ecology 27, 898-918 [IF = 6.6, CITES = 36]


24) Ji M & Greening C, Vanwonterghem I, Carere CR, Bay S, Steen J, Montgomery K, Lines T, Beardall J, van Dorst J, Snape I, Stott MB, Hugenholtz P, Ferrari B* (2018). Atmospheric trace gases support primary production in Antarctic desert surface soil. Nature 552, 400-403 [IF = 69.5, CITES = 207] (co-first author, see commentary / behind the paper)

23) Ney B, Carere CR, Sparling R, Jirapanjawat T, Stott MB, Jackson CJ, Warden A*, Greening C* (2017). Cofactor tail length modulates catalysis of bacterial F420-dependent oxidoreductases. Frontiers in Microbiology, 1902 [IF = 6.1, CITES = 16]

22) Carere CR, Hards K, Houghton KM, Power JF, McDonald B, Collet C, Gapes DJ, Sparling R, Boyd ES, Cook GM, Greening C*, Stott MB* (2017). Mixotrophy drives niche expansion of verrucomicrobial methanotrophs. The ISME Journal 11, 2599-2610 [IF = 11.2, CITES = 94] (co-corresponding author)

21) Cook GM*, Hards K, Dunn E, Heikal A, Nakatani Y, Greening C, Crick DC, Fontes FL, Pethe K, Hasenoehrl E, Berney M (2017). Oxidative phosphorylation as a target space for tuberculosis: success, caution, and future directions. In Tuberculosis and the Tubercle Bacilli (edited by Jacobs Jr WR, McShane H, Mizhari V, Orme IM), ASM Press, Washington DC [IF = N/A, CITES = 73] (invited book chapter)

20) Greening C* & Jirapanjawat T, Afroze S, Ney B, Scott C, Pandey G, Lee BM, Russell RJ, Jackson CJ, Oakeshott JG, Taylor MC, Warden A* (2017). Mycobacterial F420H2-dependent reductases promiscuously reduce diverse compounds through a common mechanism. Frontiers in Microbiology 8, 1000 [IF = 6.1, CITES = 28]

19) Bourke M*, Marriott P, Glud R, Hasler-Sheetal H, Kamalanathan M, Beardall J, Greening C, Cook P* (2017) Metabolism in anoxic permeable sediments is dominated by eukaryotic dark fermentation. Nature Geoscience 10, 30-35 [IF = 21.2, CITES = 32] (see commentary)

18) Sunnucks P*, Morales HE, Lamb A, Pavlova A, Greening C (2017). Integrative approaches for studying mitochondrial and nuclear genome co-evolution in oxidative phosphorylation. Frontiers in Genetics 8, 25 [IF = 4.7, CITES = 55] (invited article, see editorial)

17) Ney B & Ahmed HF, Carere CR, Biswas A, Oakeshott JG, Morales SE, Watt SJ, Warden A, Taylor MC, Stott MB, Jackson CJ*, Greening C* (2017). The methanogenic redox cofactor F420 is widely synthesized by aerobic soil bacteria. The ISME Journal 11, 125-137 [IF = 11.2, CITES = 63]


16) Jirapanjawat T & Ney B, Taylor MC, Warden AC, Afroze S, Russell RJ, Lee BM, Jackson CJ, Oakeshott JG, Pandey G, Greening C* (2016) The redox cofactor F420 protects mycobacteria from diverse antimicrobial compounds and mediates a reductive detoxification system. Applied and Environmental Microbiology 82, 6810-6818 [IF = 5.0, CITES = 27]

15) Søndergaard D*, Pedersen CNS, Greening C* (2016) HydDB: a web tool for hydrogenase classification and analysis. Scientific Reports 6, 34212 [IF = 5.0, CITES = 264]

14) Greening C* & Ahmed HF, Mohamed EA, Lee BM, Pandey G, Warden A, Oakeshott JG, Taylor MC, Jackson CJ* (2016). Physiology, biochemistry, and applications of F420 and Fo dependent redox reactions. Microbiology and Molecular Biology Reviews 80, 451-493 [IF = 13.0, CITES = 132] (see cover image)

13) Wolf PC, Biswas A, Morales SE, Greening C*, Gaskins HR* (2016). H2 metabolism is widespread and diverse among human colonic microbes. Gut Microbes 7, 235-245. [IF = 9.4, CITES = 91] (co-corresponding author, see editorial)

12) Greening C*, Maier RJ (2016). Atmospheric H2 fuels plant-microbe interactions. Environmental Microbiology 18, 2289-2291 [IF = 5.5, CITES = 3]

11) Greening C*, Biswas A, Carere CR, Jackson CJ, Taylor MC, Stott MB, Cook GM, Morales SE* (2016). Genomic and metagenomic surveys of hydrogenase distribution indicate H2 is a widely-utilised energy source for microbial growth and survival. The ISME Journal 10, 761-777 [IF = 11.2, CITES = 416] (F1000 recommended)


10) Ahmed FH, Carr PD, Lee BM, Afriat-Jurnou L, Mohamed AE, Hong N-S, Flanagan J, Taylor MC, Greening C, Jackson CJ* (2015). Sequence-structure-function classification of a catalytically diverse oxidoreductase superfamily in mycobacteria. Journal of Molecular Biology 427, 3554-3571 [IF = 6.2, CITES = 66]

9) Greening C* & Carere CR, Harold LK, Rushton-Green R, Hards K, Taylor MC, Morales SE, Stott MB*, Cook GM (2015). Persistence of the dominant soil phylum Acidobacteria by trace gas scavenging. PNAS 112, 10497-10502 [IF = 12.8, CITES = 103]

8) Greening C*, Constant P, Hards K, Morales SE, Oakeshott JG, Russell RJ, Taylor MC, Berney M, Conrad R, Cook GM (2015). Atmospheric hydrogen scavenging: from enzymes to ecosystems. Applied and Environmental Microbiology 81, 1190-1199 [IF = 5.0, CITES = 81] (see editorial)


7) Berney M* & Greening C*, Conrad R, Jacobs JR WR, Cook GM (2014). An obligately aerobic soil bacterium activates fermentative hydrogen production to survive reductive stress during hypoxia. PNAS 111, 11479-11484 [IF = 12.8, CITES = 98] (co-first & co-corresponding author)

6) Greening C* (2014) Living on thin air. Australasian Science 35, 19-21 [IF = N/A, CITES = 0] (invited book chapter, non-peer-reviewed)

5) Cook GM* & Greening C & Hards K & Berney M (2014). Energetics of pathogenic bacteria and opportunities for drug discovery. pp. 1-81 in Advances in Bacterial Pathogen Biology (edited by Poole RK), Academic Press, Waltham MA [IF = N/A, CITES = 102] (invited article, co-first author)

4) Greening C, Villas-Bôas SG, Robson JR, Berney M, Cook GM* (2014). The growth and survival of Mycobacterium smegmatis is enhanced by co-metabolism of atmospheric H2. PLoS ONE, e10304 [IF = 3.7, CITES = 53]

3) Greening C*, Cook GM* (2014). Integration of hydrogenase expression and hydrogen sensing in bacterial cell physiology. Current Opinion in Microbiology 18, 30-38 [IF = 7.6, CITES = 37] (invited article, see editorial)

2) Greening C, Berney M, Hards K, Cook GM*, Conrad R* (2014). A soil actinobacterium scavenges atmospheric H2 using two high-affinity, O2-dependent [NiFe]-hydrogenases. PNAS 111, 4257-4261 [IF = 12.8, CITES = 120]

1) Berney M, Greening C & Hards K, Collins D, Cook GM* (2014). Three different [NiFe]-hydrogenases confer metabolic flexibility in the obligate aerobe Mycobacterium smegmatis. Environmental Microbiology 16, 318-330 [IF = 5.5, CITES = 56]