* = corresponding author, & = authors contributed equally, IF = 2019 impact factor, bold = lab member or supervised student


63) Bayly K, Cordero PRF, Huang C, Schittenhelm RF, Grinter R*, Greening C* (2020). Mycobacteria tolerate carbon monoxide by remodelling their respiratory chain. In revision (preprint on bioRxiv)

62) Chen Y-J, Leung PM, Bay SK, Hugenholtz P, Kessler AJ, Shelley G, Waite DW, Cook PLM*, Greening C* (2020). Metabolic flexibility allows generalist bacteria to become dominant in a frequently disturbed ecosystem. In revision (preprint on bioRxiv)

61) Dong X*, Rattray JE, Campbell C, Webb J, Chakraborty A, Adebayo O, Matthews S, Li C, Fowler M, Macdonald A, Groves RA, Lewis IA, Wang SH, Mayumi D, Greening C, Hubert CRJ (2020). Thermogenic hydrocarbons fuel a redox stratified subseafloor microbiome in deep sea cold seep sediments. In revision (preprint on bioRxiv)

60) Ortiz M & Leung PM*, Shelley G, Van Goethem MW, Bay SK, Jordaan K, Vikram S, Hogg ID, Makhalanyane TP, Chown SL, Grinter R, Cowan DA*, Greening C* (2020). A genome compendium reveals diverse metabolic adaptations of Antarctic soil microorganisms. Submitted (preprint on bioRxiv)


59) Greening C*, Lithgow* (2020). Formation and function of bacterial organelles. Nature Reviews Microbiology, doi: 10.1038/s41579-020-0413-0 [IF = 34.2, CITES = 0]

58) Chiri EGreening C*, Lappan R, Waite DW, Jirapanjawat T, Dong X, Arndt SK*, Nauer PA (2020). Termite mounds contain soil-derived methanotroph communities kinetically adapted to elevated methane concentrations. The ISME Journal, doi: 10.1038/s41396-020-0722-3 [IF = 9.2, CITES = 0] (co-corresponding author)

57) Islam ZF, Welsh C, Bayly K, Grinter R, Southam G, Gagen EJ, Greening C* (2020). A widely distributed hydrogenase oxidises atmospheric H2 during bacterial growth.  The ISME Journal, doi: 10.1038/s41396-020-0713-4 [IF = 9.2, CITES = 0]

56) Bay S*, McGeoch MA, Gillor O, Wieler N, Palmer DJ, Baker DJ, Chown SL, Greening C* (2020). Soil bacterial communities exhibit strong biogeographic patterns at fine taxonomic resolution. mSystems 5, e00540-20 [IF = 6.6, CITES = 0] (editor’s choice)

55) Grinter R*Ney B, Brammanath R, Barlow CK, Cordero PRFGillett DL, Izore T, Cryle MJ, Harold LK, Cook GM, Taiaroa G, Williamson DA, Warden AC, Oakeshott JG, Taylor MC, Crellin PK, Jackson CJ, Schittenhelm RB, Coppel RL, Greening C* (2020). Cellular and structural basis of synthesis of the unique intermediate dehydro-F420-0 in mycobacteria. mSystems 5, e00389-20[IF = 6.6, CITES = 0] (see cover image)

54) Greening C (ed.), Boyd ES (ed.) (2020). Microbial Hydrogen Metabolism. e-Book, Frontiers Press.

53) Kessler AJ*, Rogers A, Cyronak T, Bourke MF, Hasler-Sheetal H, Glud RN, Greening C, Meysman FJ, Eyre BD, Cook PLM (2020). Pore water conditions driving calcium carbonate dissolution in reef sands. Geochimica et Cosmochimica Acta 279, 16-28 [IF = 4.7, CITES = 0]

52) Leung PM*Bay SK, Meier DV, Chiri E, Cowan DA, Gillor O, Woebken D, Greening C* (2020). Energetic basis of microbial growth and persistence in desert ecosystems. mSystems 5, e00495-19 [IF = 6.6, CITES = 0] (invited article)

51) Lee BM, Harold LK, Almeida DV, Afriat-Jurnou L, Aung HL, Forde BM, Hards K, Pidot SJ, Ahmed FH, Mohamed AE, Taylor MC, West NP, Stinear TP, Greening C, Beatson SA, Nuermberger EL, Cook GM, Jackson CJ* (2020). Predicting nitroimidazole antibiotic resistance mutations in Mycobacterium tuberculosis with protein engineering. PLoS Pathogens 16, e1008287 [IF = 6.2, CITES = 4]

50) Benoit SL, Maier RL*, Sawers RG, Greening C* (2020). Molecular hydrogen metabolism: a widespread trait of pathogenic bacteria and protists. Microbiology and Molecular Biology Reviews 84, e00092-19 [IF = 12.6, CITES = 6] (co-first author)

49) Greening C*, Boyd ES* (2020). Editorial: Microbial Hydrogen Metabolism. Frontiers in Microbiology 11, 56 [IF = 4.2, CITES = 0]


48) Cordero PRFGrinter R, Hards K, Cryle MJ, Warr CG, Cook GM, Greening C* (2019). Two uptake hydrogenases differentially interact with the aerobic respiratory chain during mycobacterial growth and persistence. Journal of Biological Chemistry 294, 18980-18991 [IF = 4.2, CITES = 8]

47) Kelly WJ, Leahy SC, Kamke J, Soni P, Koike S, Mackie R, Seshadri R, Cook GM, Morales SE, Greening C, Attwood GT* (2019). Occurrence and expression of genes encoding methyl-compound production in rumen bacteria. Animal Microbiome 1, 15 [IF = TBA, CITES = 2]

46) Islam ZF & Cordero PRFGreening C(2019). Putative iron-sulfur proteins are required for hydrogen consumption and enhance survival of mycobacteria. Frontiers in Microbiology 11, 2749 [IF = 4.2, CITES = 2]

45) Grinter R*, Leung PM, Wijeyewickrema LC, Littler D, Beckham S, Pike RN, Walker D, Greening C, Lithgow T* (2019). Protease-associated import systems are widespread in Gram-negative bacteria. PLoS Genetics 15, e1008435 [IF = 5.2, CITES = 2]

44) Taruc RZ*, Saifuddaolah M, Agussalim AZ, Wardani J, Ansariadi, Sirajuddin S, Rizalinda, Barker SF, Duffy GA, Faber PA, Fleming GM, Henry R, Jovanovic D, Lin A, O’Toole J, Openshaw JJ, Sweeney R, Allotey P, Cahan B, Forbes A, Greening C, McCarthy DT, Simpson JA, Chown SL, Johnston DW, Luby SP, Reidpath D, French M, Leder KS, Ramirez-Lovering D, Wong T, Brown RR (2019). Implementing baseline ecological and human health field assessments in the Revitalising Informal Settlements and their Environments (RISE) programme in Makassar, Indonesia: an interdisciplinary study. The Lancet Planetary Health 3, S8 [IF = 10.7 (SJR), CITES = 0]

43) Cordero PRFBayly KLeung PM, Huang C, Islam ZF, Schittenhelm R, King GM, Greening C* (2019). Atmospheric carbon monoxide oxidation is a widespread mechanism supporting microbial survival. The ISME Journal 13, 2868-2881 [IF = 9.2, CITES = 14]

42) Hill GE* & Hood WR, Ge Z, Grinter RGreening C, Johnson JD, Park N, Taylor H, Andreasen V, Powers M, Justyn N, Parry H, Kavazis A, Zhang Y (2019). Plumage redness signals mitochondrial function in the House Finch.  Proceedings of the Royal Society B 286, 20191354 [IF = 4.6, CITES = 7]

41) Carere CR*, McDonald B, Peach H, Greening C, Gapes DJ, Collet C, Stott MB (2019). Hydrogen oxidation influences glycogen accumulation in a verrucomicrobial methanotroph. Frontiers in Microbiology 10, 1873 [IF = 4.2, CITES = 1]

40) Greening C* & Geier R, Wang C, Woods LC, Morales SE, McDonald MJ, Rushton-Green R, Morgan XC, Koike S, Leahy SC, Kelly WJ, Cann I, Attwood GT, Cook GM, Mackie RI* (2019). Diverse hydrogen production and consumption pathways influence methane production in ruminants. The ISME Journal 13, 2617-2632 [IF = 9.2, CITES = 17]

39) Dong X*, Greening C, Rattray JE, Chakraborty A, Chuvochina M, Mayumi D, Dolfing J, Li C, Brooks JM, Bernard BB, Groves RA, Lewis IA, Hubert CRJ* (2019). Metabolic potential of uncultured bacteria and archaea associated with petroleum seepage in deep-sea sediments. Nature Communications 10, 1816 [IF = 12.1, CITES = 14]

38) Bashiri G* & Antoney J, Jirgis EN, Shah MV, Ney B, Copp, J, Stuteley, SM, Sreebhavan, S, Palmer, B, Middleditch, M, Tokuriki, N, Greening C, Scott C, Baker EN, Jackson CJ* (2019). A revised biosynthetic pathway for the cofactor F420 in prokaryotes. Nature Communications 10, 1558 [IF = 12.1, CITES = 12]

37) Greening C*, Grinter R, Chiri E (2019). Uncovering the metabolic strategies of the dormant microbial majority: towards integrative approaches. mSystems 4, e00107-19 [IF = 6.6, CITES = 3] (invited article; see editorial)

36) Islam ZF, Cordero PRF, Feng J, Chen Y-J, Bay SK, Jirapanjawat T, Gleadow RM, Carere CR, Stott MB, Chiri E, Greening C(2019). Two Chloroflexi classes independently evolved the ability to persist on atmospheric hydrogen and carbon monoxide. The ISME Journal 13, 1801–1813 [IF = 9.2, CITES = 23]

35) Spang A*, Stairs CW, Donbrowski N, Eme L, Lombard J, Cáceres EF, Greening C, Baker BJ, Ettema TJ* (2019). Proposal of the reverse flow model for the origin of the eukaryotic cell based on comparative analyses of Asgard archaeal metabolism. Nature Microbiology 4, 1138–1148 [IF = 15.5, CITES = 45] (see commentary)

34) Kessler AJ & Chen Y-J & Waite DW, Hutchinson T, Koh S, Popa ME, Beardall J, Hugenholtz P, Cook PL*, Greening C* (2019). Bacterial fermentation and respiration processes are uncoupled in anoxic permeable sediments. Nature Microbiology 4, 1014-1023 [IF = 15.5, CITES = 17]

33) Hill GE*, Havird JC, Sloan DB, Burton RS, Greening C, Dowling DK (2019). Assessing the fitness consequences of mitonuclear interactions in natural populations. Biological Reviews 94, 1089-1104 [IF = 10.7, CITES = 34]

32) Harold LK, Antoney J, Ahmed FH, Hards K, Carr PD, Rapson T, Greening C*, Jackson CJ*, Cook, GM* (2019). FAD-sequestering proteins protect mycobacteria against hypoxic and oxidative stress. Journal of Biological Chemistry 294, 2903-2912 [IF = 4.2, CITES = 6] (co-corresponding author)


31) Stott MB*, Carere CR, Greening C, Morgan XC (2018) Pyrinomonas. Bergey’s Manual of Systematics of Archaea and Bacteria [IF = N/A, CITES = 0] (invited book chapter)

30) Morales HE*, Pavlova A, Amos N, Major R, Kilian A, Greening C, Sunnucks P* (2018). Concordant divergence of mitogenomes and a mitonuclear gene cluster in bird lineages inhabiting different climates. Nature Ecology & Evolution 2, 1258-1267 [IF = 12.5, CITES = 34]

29) Dong X, Greening C, Brüls T, Conrad R, Guo K, Blaskowski S, Kaschani F, Kaiser M, Laban NA, Meckenstock R* (2018) Fermentative Spirochaetes mediate necromass recycling in anoxic hydrocarbon-contaminated habitats. The ISME Journal 12, 2039-2050 [IF = 9.2, CITES = 14]

28) Bay S, Ferrari BC, Greening C* (2018) Life without water: how do bacteria generate biomass in desert ecosystems? Microbiology Australia 39, 28-32 [IF = N/A, CITES = 11] (invited article, see cover image)

27) Wang X, Teng Y*, Tu C, Luo Y, Greening C, Zhang N, Dai S, Ren W, Zhao L, Li Z (2018) Coupling between nitrogen fixation and tetrachlorobiphenyl dechlorination in a rhizobium-legume symbiosis. Environmental Science & Technology 52, 2217-2224 [IF = 7.9, CITES = 10]

26) Krzemińska U*, Morales HE, Greening C, Nyári AS, Wilson R, Song BK, Austin CM, Sunnucks P, Pavlova A, Rahman (2018). Population mitogenomics provides insights into evolutionary history, source of invasions and diversifying selection in Corvus splendens. Heredity 120, 296-309 [IF = 3.4, CITES = 4]

25) Lamb AM, Gan HM, Greening C, Joseph L, Lee YP, Morán-Ordóñez A, Sunnucks P, Pavlova A* (2018). Climate-driven mitochondrial selection: a test in Australian songbirds. Molecular Ecology 27, 898-918 [IF = 5.2, CITES = 22]

24) Ji M & Greening C, Vanwonterghem I, Carere CR, Bay S, Steen J, Montgomery K, Lines T, Beardall J, van Dorst J, Snape I, Stott MB, Hugenholtz P, Ferrari B* (2018). Atmospheric trace gases support primary production in Antarctic desert surface soil. Nature 552, 400-403 [IF = 42.8, CITES = 92] (co-first author, see commentary / behind the paper)


23) Ney B, Carere CR, Sparling R, Jirapanjawat T, Stott MB, Jackson CJ, Warden A*, Greening C* (2017). Cofactor tail length modulates catalysis of bacterial F420-dependent oxidoreductases. Frontiers in Microbiology, 1902 [IF = 4.2, CITES = 8]

22) Carere CR, Hards K, Houghton KM, Power JF, McDonald B, Collet C, Gapes DJ, Sparling R, Boyd ES, Cook GM, Greening C*, Stott MB* (2017). Mixotrophy drives niche expansion of verrucomicrobial methanotrophs. The ISME Journal 11, 2599-2610 [IF = 9.2, CITES = 42] (co-corresponding author)

21) Cook GM*, Hards K, Dunn E, Heikal A, Nakatani Y, Greening C, Crick DC, Fontes FL, Pethe K, Hasenoehrl E, Berney M (2017). Oxidative phosphorylation as a target space for tuberculosis: success, caution, and future directions. In Tuberculosis and the Tubercle Bacilli (edited by Jacobs Jr WR, McShane H, Mizhari V, Orme IM), ASM Press, Washington DC [IF = N/A, CITES = 36] (invited book chapter)

20) Greening C* & Jirapanjawat T, Afroze S, Ney B, Scott C, Pandey G, Lee BM, Russell RJ, Jackson CJ, Oakeshott JG, Taylor MC, Warden A* (2017). Mycobacterial F420H2-dependent reductases promiscuously reduce diverse compounds through a common mechanism. Frontiers in Microbiology 8, 1000 [IF = 4.2, CITES = 16]

19) Bourke M*, Marriott P, Glud R, Hasler-Sheetal H, Kamalanathan M, Beardall J, Greening C, Cook P* (2017) Metabolism in anoxic permeable sediments is dominated by eukaryotic dark fermentation. Nature Geoscience 10, 30-35 [IF = 13.6, CITES = 21] (see commentary)

18) Sunnucks P*, Morales HE, Lamb A, Pavlova A, Greening C (2017). Integrative approaches for studying mitochondrial and nuclear genome co-evolution in oxidative phosphorylation. Frontiers in Genetics 8, 25 [IF = 3.3, CITES = 34] (invited article, see editorial)

17) Ney B & Ahmed HF, Carere CR, Biswas A, Oakeshott JG, Morales SE, Watt SJ, Warden A, Taylor MC, Stott MB, Jackson CJ*, Greening C* (2017). The methanogenic redox cofactor F420 is widely synthesized by aerobic soil bacteria. The ISME Journal 11, 125-137 [IF = 9.2, CITES = 35]


16) Jirapanjawat T & Ney B, Taylor MC, Warden AC, Afroze S, Russell RJ, Lee BM, Jackson CJ, Oakeshott JG, Pandey G, Greening C* (2016) The redox cofactor F420 protects mycobacteria from diverse antimicrobial compounds and mediates a reductive detoxification system. Applied and Environmental Microbiology 82, 6810-6818 [IF = 4.0, CITES = 17]

15) Søndergaard D*, Pedersen CNS, Greening C* (2016) HydDB: a web tool for hydrogenase classification and analysis. Scientific Reports 6, 34212 [IF = 4.0, CITES = 106]

14) Greening C* & Ahmed HF, Mohamed EA, Lee BM, Pandey G, Warden A, Oakeshott JG, Taylor MC, Jackson CJ* (2016). Physiology, biochemistry, and applications of F420 and Fo dependent redox reactions. Microbiology and Molecular Biology Reviews 80, 451-493 [IF = 12.6, CITES = 66] (see cover image)

13) Wolf PC, Biswas A, Morales SE, Greening C*, Gaskins HR* (2016). H2 metabolism is diverse and widespread among human colonic microbes. Gut Microbes 7, 235-245. [IF = 7.7, CITES = 45] (co-corresponding author, see editorial)

12) Greening C*, Maier RJ (2016). Atmospheric H2 fuels plant-microbe interactions. Environmental Microbiology 18, 2289-2291 [IF = 4.9, CITES = 1]

11) Greening C*, Biswas A, Carere CR, Jackson CJ, Taylor MC, Stott MB, Cook GM, Morales SE* (2016). Genomic and metagenomic surveys of hydrogenase distribution indicate H2 is a widely-utilised energy source for microbial growth and survival. The ISME Journal 10, 761-777 [IF = 9.2, CITES = 228] (F1000 recommended)


10) Ahmed FH, Carr PD, Lee BM, Afriat-Jurnou L, Mohamed AE, Hong N-S, Flanagan J, Taylor MC, Greening C, Jackson CJ* (2015). Sequence-structure-function classification of a catalytically diverse oxidoreductase superfamily in mycobacteria. Journal of Molecular Biology 427, 3554-3571 [IF = 5.1, CITES = 51]

9) Greening C* & Carere CR, Harold LK, Rushton-Green R, Hards K, Taylor MC, Morales SE, Stott MB*, Cook GM (2015). Persistence of the dominant soil phylum Acidobacteria by trace gas scavenging. PNAS 112, 10497-10502 [IF = 9.4, CITES = 64]

8) Greening C*, Constant P, Hards K, Morales SE, Oakeshott JG, Russell RJ, Taylor MC, Berney M, Conrad R, Cook GM (2015). Atmospheric hydrogen scavenging: from enzymes to ecosystems. Applied and Environmental Microbiology 81, 1190-1199 [IF = 4.0, CITES = 47] (see editorial)


7) Berney M* & Greening C*, Conrad R, Jacobs JR WR, Cook GM (2014). An obligately aerobic soil bacterium activates fermentative hydrogen production to survive reductive stress during hypoxia. PNAS 111, 11479-11484 [IF = 9.4, CITES = 65] (co-first & co-corresponding author)

6) Greening C (2014) Living on thin air. Australasian Science 35, 19-21 [IF = N/A, CITES = 0] (invited book chapter, non-peer-reviewed)

5) Cook GM* & Greening C & Hards K & Berney M (2014). Energetics of pathogenic bacteria and opportunities for drug discovery. pp. 1-81 in Advances in Bacterial Pathogen Biology (edited by Poole RK), Academic Press, Waltham MA [IF = N/A, CITES = 72] (invited article, co-first author)

4) Greening C, Villas-Bôas SG, Robson JR, Berney M, Cook GM* (2014). The growth and survival of Mycobacterium smegmatis is enhanced by co-metabolism of atmospheric H2. PLoS ONE, e10304 [IF = 2.7, CITES = 29]

3) Greening C*, Cook GM* (2014). Integration of hydrogenase expression and hydrogen sensing in bacterial cell physiology. Current Opinion in Microbiology 18, 30-38 [IF = 8.1, CITES = 30] (invited article, see editorial)

2) Greening C, Berney M, Hards K, Cook GM*, Conrad R* (2014). A soil actinobacterium scavenges atmospheric H2 using two high-affinity, O2-dependent [NiFe]-hydrogenases. PNAS 111, 4257-4261 [IF = 9.4, CITES = 87]

1) Berney M, Greening C & Hards K, Collins D, Cook GM* (2014). Three different [NiFe]-hydrogenases confer metabolic flexibility in the obligate aerobe Mycobacterium smegmatis. Environmental Microbiology 16, 318-330 [IF = 4.9, CITES = 42]